收起左侧

[机器学习] 斯坦福大学吴恩达机器学习课程

93
回复
  [复制链接]
avatar
  • TA的每日心情
    qdsmile奋斗
    22 小时前
  • 签到天数: 2663 天

    [LV.Master]伴吧终老

    460

    主题

    1056

    帖子

    3万

    积分
    发表于 2017-10-24 14:08:45 | 显示全部楼层 |阅读模式
    斯坦福大学吴恩达机器学习课程

    1 - 1 - Welcome (7 min).mkv
    1 - 2 - What is Machine Learning_ (7 min).mkv
    1 - 3 - Supervised Learning (12 min).mkv
    1 - 4 - Unsupervised Learning (14 min).mkv
    2 - 1 - Model Representation (8 min).mkv
    2 - 2 - Cost Function (8 min).mkv
    2 - 3 - Cost Function - Intuition I (11 min).mkv
    2 - 4 - Cost Function - Intuition II (9 min).mkv
    2 - 5 - Gradient Descent (11 min).mkv
    2 - 6 - Gradient Descent Intuition (12 min).mkv
    2 - 7 - GradientDescentForLinearRegression  (6 min).mkv
    2 - 8 - What_'s Next (6 min).mkv
    3 - 1 - Matrices and Vectors (9 min).mkv
    3 - 2 - Addition and Scalar Multiplication (7 min).mkv
    3 - 3 - Matrix Vector Multiplication (14 min).mkv
    3 - 4 - Matrix Matrix Multiplication (11 min).mkv
    3 - 5 - Matrix Multiplication Properties (9 min).mkv
    3 - 6 - Inverse and Transpose (11 min).mkv
    4 - 1 - Multiple Features (8 min).mkv
    4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv
    4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mkv
    4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mkv
    4 - 5 - Features and Polynomial Regression (8 min).mkv
    4 - 6 - Normal Equation (16 min).mkv
    4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mkv
    5 - 1 - Basic Operations (14 min).mkv
    5 - 2 - Moving Data Around (16 min).mkv
    5 - 3 - Computing on Data (13 min).mkv
    5 - 4 - Plotting Data (10 min).mkv
    5 - 5 - Control Statements_ for, while, if statements (13 min).mkv
    5 - 6 - Vectorization (14 min).mkv
    5 - 7 - Working on and Submitting Programming Exercises (4 min).mkv
    6 - 1 - Classification (8 min).mkv
    6 - 2 - Hypothesis Representation (7 min).mkv
    6 - 3 - Decision Boundary (15 min).mkv
    6 - 4 - Cost Function (11 min).mkv
    6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mkv
    6 - 6 - Advanced Optimization (14 min).mkv
    6 - 7 - Multiclass Classification_ One-vs-all (6 min).mkv
    7 - 1 - The Problem of Overfitting (10 min).mkv
    7 - 2 - Cost Function (10 min).mkv
    7 - 3 - Regularized Linear Regression (11 min).mkv
    7 - 4 - Regularized Logistic Regression (9 min).mkv
    8 - 1 - Non-linear Hypotheses (10 min).mkv
    8 - 2 - Neurons and the Brain (8 min).mkv
    8 - 3 - Model Representation I (12 min).mkv
    8 - 4 - Model Representation II (12 min).mkv
    8 - 5 - Examples and Intuitions I (7 min).mkv
    8 - 6 - Examples and Intuitions II (10 min).mkv
    8 - 7 - Multiclass Classification (4 min).mkv
    9 - 1 - Cost Function (7 min).mkv
    9 - 2 - Backpropagation Algorithm (12 min).mkv
    9 - 3 - Backpropagation Intuition (13 min).mkv
    9 - 4 - Implementation Note_ Unrolling Parameters (8 min).mkv
    9 - 5 - Gradient Checking (12 min).mkv
    9 - 6 - Random Initialization (7 min).mkv
    9 - 7 - Putting It Together (14 min).mkv
    9 - 8 - Autonomous Driving (7 min).mkv
    10 - 1 - Deciding What to Try Next (6 min).mkv
    10 - 2 - Evaluating a Hypothesis (8 min).mkv
    10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mkv
    10 - 4 - Diagnosing Bias vs. Variance (8 min).mkv
    10 - 5 - Regularization and Bias_Variance (11 min).mkv
    10 - 6 - Learning Curves (12 min).mkv
    10 - 7 - Deciding What to Do Next Revisited (7 min).mkv
    11 - 1 - Prioritizing What to Work On (10 min).mkv
    11 - 2 - Error Analysis (13 min).mkv
    11 - 3 - Error Metrics for Skewed Classes (12 min).mkv
    11 - 4 - Trading Off Precision and Recall (14 min).mkv
    11 - 5 - Data For Machine Learning (11 min).mkv
    12 - 1 - Optimization Objective (15 min).mkv
    12 - 2 - Large Margin Intuition (11 min).mkv
    12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mkv
    12 - 4 - Kernels I (16 min).mkv
    12 - 5 - Kernels II (16 min).mkv
    12 - 6 - Using An SVM (21 min).mkv
    13 - 1 - Unsupervised Learning_ Introduction (3 min).mkv
    13 - 2 - K-Means Algorithm (13 min).mkv
    13 - 3 - Optimization Objective (7 min)(1).mkv
    13 - 3 - Optimization Objective (7 min).mkv
    13 - 4 - Random Initialization (8 min).mkv
    13 - 5 - Choosing the Number of Clusters (8 min).mkv
    14 - 1 - Motivation I_ Data Compression (10 min).mkv
    14 - 2 - Motivation II_ Visualization (6 min).mkv
    14 - 3 - Principal Component Analysis Problem Formulation (9 min).mkv
    14 - 4 - Principal Component Analysis Algorithm (15 min).mkv
    14 - 5 - Choosing the Number of Principal Components (11 min).mkv
    14 - 6 - Reconstruction from Compressed Representation (4 min).mkv
    14 - 7 - Advice for Applying PCA (13 min).mkv
    15 - 1 - Problem Motivation (8 min).mkv
    15 - 2 - Gaussian Distribution (10 min).mkv
    15 - 3 - Algorithm (12 min).mkv
    15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mkv
    15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mkv
    15 - 6 - Choosing What Features to Use (12 min).mkv
    15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mkv
    15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mkv
    16 - 1 - Problem Formulation (8 min).mkv
    16 - 2 - Content Based Recommendations (15 min).mkv
    16 - 3 - Collaborative Filtering (10 min).mkv
    16 - 4 - Collaborative Filtering Algorithm (9 min).mkv
    16 - 5 - Vectorization_ Low Rank Matrix Factorization (8 min).mkv
    16 - 6 - Implementational Detail_ Mean Normalization (9 min).mkv
    17 - 1 - Learning With Large Datasets (6 min).mkv
    17 - 2 - Stochastic Gradient Descent (13 min).mkv
    17 - 3 - Mini-Batch Gradient Descent (6 min).mkv
    17 - 4 - Stochastic Gradient Descent Convergence (12 min).mkv
    17 - 5 - Online Learning (13 min).mkv
    17 - 6 - Map Reduce and Data Parallelism (14 min).mkv
    18 - 1 - Problem Description and Pipeline (7 min).mkv
    18 - 2 - Sliding Windows (15 min).mkv
    18 - 3 - Getting Lots of Data and Artificial Data (16 min).mkv
    18 - 4 - Ceiling Analysis_ What Part of the Pipeline to Work on Next (14 min).mkv
    19 - 1 - Summary and Thank You (5 min).mkv
    pdf
    ppt
    中英文字幕.rar
    如何添加中文字幕.docx
    教程和笔记
    机器学习课程源代码
    未标题-1.jpg

    下载地址: itjc20
    游客,如果您要查看本帖隐藏内容请回复
    学习心情好,签到少不了。
    avatar
  • TA的每日心情
    qdsmile开心
    2023-10-19 11:53
  • 签到天数: 236 天

    [LV.7]超级吧粉

    0

    主题

    0

    帖子

    671

    积分
    发表于 2017-10-30 10:01:02 | 显示全部楼层
    谢谢分享
    avatar
  • TA的每日心情
    qdsmile开心
    2022-11-15 04:32
  • 签到天数: 220 天

    [LV.7]超级吧粉

    0

    主题

    209

    帖子

    7338

    积分
    发表于 2017-11-17 01:50:05 | 显示全部楼层
    看看这个。。
    avatar
  • TA的每日心情
    qdsmile慵懒
    2020-1-2 16:53
  • 签到天数: 86 天

    [LV.6]普通吧粉

    4

    主题

    11

    帖子

    2024

    积分
    发表于 2017-11-24 08:11:50 | 显示全部楼层
    RE: 斯坦福大学吴恩达机器学习课程 [修改]
    avatar
  • TA的每日心情
    qdsmile开心
    2021-12-5 20:21
  • 签到天数: 30 天

    [LV.5]初驻小吧

    0

    主题

    20

    帖子

    912

    积分
    发表于 2017-11-28 15:48:27 | 显示全部楼层
    666
    avatar
  • TA的每日心情
    qdsmile奋斗
    2024-1-25 00:18
  • 签到天数: 42 天

    [LV.5]初驻小吧

    1

    主题

    73

    帖子

    192

    积分
    发表于 2017-12-2 20:52:04 | 显示全部楼层
    下载看看
    avatar
  • TA的每日心情
    qdsmile擦汗
    2024-7-4 23:38
  • 签到天数: 966 天

    [LV.10]以吧为家

    0

    主题

    1

    帖子

    2230

    积分
    发表于 2017-12-20 13:02:35 | 显示全部楼层
    666
    avatar
  • TA的每日心情
    qdsmile慵懒
    2024-6-21 22:42
  • 签到天数: 229 天

    [LV.7]超级吧粉

    0

    主题

    6

    帖子

    684

    积分
    发表于 2018-1-17 23:20:30 | 显示全部楼层
    xxfx谢谢分享
    avatar
  • TA的每日心情
    qdsmile
    2018-1-19 19:10
  • 签到天数: 1 天

    [LV.1]小吧新人

    0

    主题

    1

    帖子

    15

    积分

    发表于 2018-1-19 19:11:53 | 显示全部楼层
    感谢分享
    avatar
  • TA的每日心情
    qdsmile奋斗
    2018-8-1 07:06
  • 签到天数: 1 天

    [LV.1]小吧新人

    0

    主题

    4

    帖子

    29

    积分

    发表于 2018-8-1 07:14:05 | 显示全部楼层
    谢谢分享,学习一下
    您需要登录后才可以回帖 登录 | 立即注册 QQ登录

    本版积分规则